
CS2223 Algorithms B Term 2015

Exam 1 November 19, 2015

NAME: _RUBRIC FOR EXAM GRADERS______

Instructions:

 Time allowed: 50 minutes

 Show your work and justify your answers

 Use the space provided to write your answers

Total Q1 Q2 Q3 Q4 Q5

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO!!

Question 1. (20 pts.) Short Answer Questions
For each of the following statements:

+3 for correct answer

+2 for providing explanation

If the statement is true, circle True and explain why.

If the statement is false, circle False and explain why the statement is false.

Your explanations should be brief (using about one sentence), but complete.

(a) [5 pts.] True / False : Given an array of N unordered integers, you need at least N comparison

operations to determine the maximum value.

FALSE: You only need N-1 comparisons to find max in array of N

(b) [5 pts.] True / False : Given an array of N integers to sort, Selection Sort makes exactly N

exchanges while sorting the array.

TRUE: Review Selection Sort algorithm and you will see that final step is always to

exchange in place (p. 249)

(c) [5 pts.] True / False : In a max Heap containing seven distinct values, the bottom-most level

contains its four smallest values.

FALSE: You know that each node in a Heap is greater than either of its two

children. But with seven distinct values, you might have the

following situation. Note that four smallest

are highlighted in gray but are not ALL on final row.

(d) [5 pts.] True / False : When QuickSort sorts an array with an even number of values, it recursively

calls QuickSort on two subproblems of exactly half the size.

FALSE: Subproblems are based on where pivot is placed. Alternatively, with an

even number of values, the partitioning will place pivot in

one place, which means an odd number of values form the

sum of the two subarrays, so both can’t be the same size!

Question 2. (20 pts.) Timing Analysis
Assume the existence of the rank function which returns the index location of target within a sorted array

of elements (or returns -1 if the target does not exist):

static int rank (int[] a, int target) {
 int lo = 0;
 int hi = a.length -1;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 if (target < a[mid]) { hi = mid - 1; }
 else if (target > a[mid]) { lo = mid + 1; }
 else { return mid; }
 }
 return -1;
}

(a) [10pts.] The special(a) method is executed on an array of size N. You can assume N is a power of 2.

For each of the ten numbered statements below, determine the frequency of the statement and its cost

(i.e., execution time).

 static int special (int[] a) { frequency time cost
1. int N = a.length; _1_ _1_
2. Queue<Integer> q = new Queue<Integer>(); _1_ _1_

3. while (N > 1) { _log N_ _1_
4. q.enqueue(N); _log N_ _1_
5. N = N/2; _log N_ _1_
 }

6. int value = 0; _1_ _1_
7. while (!q.isEmpty()) { _log N_ _1_
8. int x = q.dequeue(); _log N_ _1_
9. if (rank(a, x) != -1) { _log N_ _t0 * log N_
10. value++; _x_ _1_
 }
 }
 return value; x is unknown above
 }

(b) [5 pts.] What is the tilde approximation for the execution time of special(a) on an array of size N?

Now sum every product (freq*time) together and you get:

3 + x + 5*log N + t0 * log N * log N which leads to ~ t0*(log N)
2 since that is the most dominant

exponent in the equation

(b) [5 pts.] What is the order of growth of the running time of special(a) on an array of size N?

Order of growth is (log N)2

Acceptable to use “1” as constant

value for all time/cost which are

constant. Sure you could use t0, t1,

and so on, but in the end these will be

approximated away. Note that the

only non-constant operation is #9

Question 3. (20 pts.) Type Question
The Stack data type does not provide a boolean contains (Item it) operation. However, you are

asked to implement the following static method to provide this functionality. I have given you an extra

Stack object and an extra Queue object that you can use for extra storage in your answer.

(a) [15 pts.] You can provide Java code or describe your answer in pseudocode.

/** Determine whether stack contains the target integer. Upon return, stack must

 * contain its original contents in their original positions. */

 public static boolean contains (Stack<Integer> stack, Integer target) {

 Stack<Integer> extra = new Stack<Integer>();

 Queue<Integer> queue = new Queue<Integer>();

Multiple ways to handle this. Note that to make a copy of ‘stack’ you have to disturb it. Let’s get started

+2 boolean found = false

+1 while (!stack.isEmpty()) {

+2 x = stack.pop()

+2 extra.push(x)

+2 if x == target {

+1 found = true;

+1 break;

 }

 }

+1 while (!extra.isEmpty()) {

+2 stack.push(extra.pop())

 }

+1 return found

b) [5 pts.] If stack has N elements, compute the total number of push / pop calls needed in the worst case.

Question was a bit ambiguous. If you only count the operations on stack, then you push and pop N times

each, for a worst case of 2N. If you also count the push and pop on extra, then you have to add an

additional 2N for a total of 4N

Note: if you used a queue then you

would have reversed the order of the

elements on the stack. If you forgot to

push back onto the stack the elements

you popped, then you would not have

satisfied the specification of ‘contains’

Question 4. (20 pts.) Heap (you don’t really need the code, but I’m providing just in case)
public class Heap {
 int[] pq; // Store in pq[1..N] public boolean isEmpty() { return N == 0; }
 int N; // number of items in Heap public int size() { return N; }

 public Heap (int initCapacity) { void swim (int k) {
 pq = new int[initCapacity + 1]; while (k > 1 && less(k/2, k)) {
 } exch(k, k/2);
 k = k/2;
 public void insert (int x) { }
 pq[++N] = x; }
 swim(N);
 } void sink (int k) {
 while (2*k <= N) {
 public int delMax() { int j = 2*k;
 int max = pq[1]; if (j < N && less(j, j+1)) j++;
 exch(1, N--); if (!less(k, j)) break;
 pq[N+1] = null; exch(k, j);
 sink(1); k = j;
 return max; }
 } }

(a) [12 pts.] Assume you create heap=new Heap(10) and call insert with the following values in this

order: 3, 7, 2, 9, 1 and 4. Once all values are inserted, draw the tree representation of the final heap. Also

show the array representation of pq that stores its values.

Note in the array representation you lose the 0th element, so it is

shown as a --. Then the heap is constructed with 11 total spaces, the

last four of which are unused. Finally you read off the heap left to

right by level.

NOTE: There were two separate exams. The other exam had the

same problem but all numbers were one greater (i.e., 4, 8, 3, 9, 2, 5

were added)

(b) [8 pts.] With this same heap, call delMax and then insert the values 6 and then 8. Now draw the

tree representation of the final heap. Also show the array representation of pq that stores its values.

Question 5. (20 pts.) Algorithm Question
The following is an example of an UpDown array of six unique values that contains a subarray a[0..3] of

increasing integers followed by a subarray a[3..5] of decreasing values; note that a[3]=12 is the

maximum value in the array:

2 7 10 12 6 1
a[0] a[3] a[5]

To summarize, an UpDown array of size N has the following properties:

 N ≥ 3 and all values in the array are different

 subarray a[0..k] is in ascending order and k > 0

 subarray a[k..N-1] is in descending order k < N-1

(a) [15 pts.] Design an algorithm that computes the index k containing the maximum value in an UpDown

array. Performance must be ~ log N. (To receive half credit on this part, the performance can be ~N).

Write your answer in pseudocode or Java.

(b) [5 pts.] In the worst case, what is the most number of comparisons of array items that your algorithm

makes?

/** Return index k of maximum element a[k] in UpDown array. */

public static int maxUpDownArray (int[] a) {

There were at least five different ways of solving this problem, many of them discovered by students. Here

is my implementation with points:

+1 int lo = 1 // can avoid 0th and last one since they won’t be largest

+1 int hi = a.length-2

+2 while lo <= hi // must be <= otherwise strange case happens

+1 mid = lo + (hi-lo)/2

+3 if a[mid] < a[mid+1] // means we are still ascending

+2 lo = mid+1 // can extend past mid, but also could have been just lo = mid

 else

+2 hi = mid -1 // interesting: no need to check again since must be descending

+3 return lo

Now how to compute number of comparisons? Each pass through, as with binary array search, there is a

comparison, thus:

(1 + Floor(log n)) – and you can review the posted code solution to see that this is confirmed.

Note: FOR HALF CREDIT YOU COULD HAVE DONE SIMPLE LINEAR SEARCH UNTIL YOU SEE DESCENDING

VALUES, WHICH WOULD REQUIRE N-1 COMPARISONS IN WORST CASE

